NOTRE-DAME UNIVERSITY

Faculty of Engineering
Department of Electrical, Computer and Communications Engineering FALL 2016

EEN 340: SIGNALS AND SYSTEMS
MIDTERM EXAMINATION - I SOLUTION KEY
Course Instructor: Dr. Maurice J. Khabbaz

Problem 1: Understanding Fundamental Concepts (25 Points)

This problem is composed of four parts revolving around four different topics. They are as follows.

PART A: Orthogonal Functions (5 Points)

Consider the functions $f_{1}(t)=A \sin (4 \pi t)$ and $f_{2}(t)=B \sin (2 \pi t)$. Prove that these two functions are orthogonal over the interval $\left[-\frac{1}{2} ; \frac{1}{2}\right]$. Show all the proof details in the box below.

Solution:

In order to show the orthogonality of the functions $f_{1}(t)$ and $f_{2}(t)$, evaluate the following integral:

$$
\begin{aligned}
I & =\int_{-\frac{1}{2}}^{+\frac{1}{2}} f_{1}(t) \cdot f_{2}^{*}(t) \mathrm{d} t=(A \cdot B) \int_{-\frac{1}{2}}^{+\frac{1}{2}} \sin (4 \pi t) \sin (2 \pi t) \mathrm{d} t \\
& =\frac{A \cdot B}{2}\left[\int_{-\frac{1}{2}}^{+\frac{1}{2}} \cos (2 \pi t) \mathrm{d} t-\int_{-\frac{1}{2}}^{+\frac{1}{2}} \cos (6 \pi t) \mathrm{d} t\right] \\
& =\frac{A \cdot B}{2} \frac{1}{2 \pi}\left[\sin \left(2 \pi \frac{1}{2}\right)-\sin \left(-2 \pi \frac{1}{2}\right)\right]-\frac{A \cdot B}{2} \frac{1}{6 \pi}\left[\sin \left(6 \pi \frac{1}{2}\right)-\sin \left(-6 \pi \frac{1}{2}\right)\right] \\
& =0
\end{aligned}
$$

PART B: Properties of the Unit Impulse Function (5 Points)

Evaluate the following two integrals.

$$
\int_{-\infty}^{+\infty} \sin (t-1) \delta(2 t-4) \mathrm{d} t
$$

Solution:
In the above integral, note that the function $\delta(2 t-4) \neq 0$ whenever $2 t-4=0 \Rightarrow t=2$. As such $\sin (t-1) \delta(2 t-4)=\sin (2-1) \delta(2 t-4)=\sin (1) \delta(2 t-4)$. Consequently:

$$
\int_{-\infty}^{+\infty} \sin (t-1) \delta(2 t-4) \mathrm{d} t=\int_{-\infty}^{+\infty} \sin (1) \delta(2 t-4) \mathrm{d} t=\sin (1) \int_{-\infty}^{+\infty} \delta(2 t-4) \mathrm{d} t
$$

Applying a change of variable, let $\tau=2 t-4 \Rightarrow \tau \in[-\infty ;+\infty]$ and $\mathrm{d} \tau=2 \mathrm{~d} t$. As such:

$$
\sin (1) \int_{-\infty}^{+\infty} \delta(2 t-4) \mathrm{d} t=\sin (1) \int_{-\infty}^{+\infty} \delta(\tau) \frac{\mathrm{d} \tau}{2}=\frac{1}{2} \sin (1)=0.4207
$$

$$
\int_{-\infty}^{+\infty} \cos \left(2 t-\frac{\pi}{2}\right) \delta\left(t-\frac{\pi}{4}\right) \mathrm{d} t
$$

Solution:

Observe that:

$$
\cos \left(2 t-\frac{\pi}{2}\right) \delta\left(t-\frac{\pi}{4}\right)=\cos \left(2 \frac{\pi}{4}-\frac{\pi}{2}\right) \delta\left(t-\frac{\pi}{4}\right)=\cos (0) \delta\left(t-\frac{\pi}{4}\right)=\delta\left(t-\frac{\pi}{4}\right)
$$

As such:

$$
\int_{-\infty}^{+\infty} \cos \left(2 t-\frac{\pi}{2}\right) \delta\left(t-\frac{\pi}{4}\right) \mathrm{d} t=\int_{-\infty}^{+\infty} \delta\left(t-\frac{\pi}{4}\right) \mathrm{d} t=1
$$

PART C: Plotting Signals (10 Points)

Consider the signal:

$$
x(t)=3 u(t+2)+u(t+3)-u(t-4)-u(t-2)-2 u(t-1)
$$

Use the below two graphs respectively to:

1. Plot the signal $x(t)$.
(2 Points)
2. Plot the signal $x\left(-\frac{t+1}{2}\right)$.
(8 Points)

$$
x\left(-\frac{t+1}{2}\right)
$$

PART D: Systems Characteristics (5 Points)

Consider a system having an input $x(t)$ and an output $y(t)$ such that:

$$
y(t)=\int_{t}^{t+1} x(\tau-\alpha) \mathrm{d} \tau, \text { for } \alpha \in \mathbb{R}
$$

Answer the following questions (show all your work in order to have credit):

1. Study the linearity and time invariance of the above-described system.
2. Determine the values of α for which the above-described system will be causal. (3 Points)

Solution:

1. Being by verifying the linearity of the system. For this reason, consider two inputs $x_{1}(t)$ and $x_{2}(t)$ together with their respective outputs $y_{1}(t)$ and $y_{2}(t)$ such that:

$$
\begin{aligned}
& x_{1}(t) \rightarrow y_{1}(t)=\int_{t}^{t+1} x_{1}(\tau-\alpha) \mathrm{d} \tau \\
& x_{2}(t) \rightarrow y_{2}(t)=\int_{t}^{t+1} x_{2}(\tau-\alpha) \mathrm{d} \tau
\end{aligned}
$$

Now, consider the input $\chi(t)=\lambda x_{1}(t)+\mu x_{2}(t)$ where $(\lambda, \mu) \in \mathbb{R}$. Denote by $\gamma(t)$ the output corresponding to $\chi(t)$. It is given by:

$$
\begin{aligned}
\gamma(t) & =\int_{t}^{t+1} \chi(\tau-\alpha) \mathrm{d} \tau=\int_{t}^{t+1}\left[\lambda x_{1}(\tau-\alpha)+\mu x_{2}(\tau-\alpha)\right] \mathrm{d} \tau \\
& =\lambda \int_{t}^{t+1} x_{1}(\tau-\alpha) \mathrm{d} \tau+\mu \int_{t}^{t+1} x_{2}(\tau-\alpha) \mathrm{d} \tau=\lambda y_{1}(t)+\mu y_{2}(t) \Rightarrow \text { The system is linear. }
\end{aligned}
$$

Next, verify the time-invariance of the system. For this reason, consider an input $x\left(t-t_{0}\right)$. the corresponding output will be:
$z(t)=\int_{t-t_{0}}^{t-t_{0}+1} x(\tau-\alpha) \mathrm{d} \tau=\int_{t-t_{0}}^{(t+1)-t_{0}} x(\tau-\alpha) \mathrm{d} \tau=y\left(t-t_{0}\right) \Rightarrow$ The system is time-invariant.
2. For causality, it is required that $y\left(t_{0}\right)$ be only dependent on values of $x(t)$ such as $t \leq t_{0}$. Accordingly:

$$
t_{0}+1-\alpha \leq t_{0} \Rightarrow \alpha \geq 1
$$

Problem 2: Convolution (25 Points)

Consider a system having an impulse response $h(t)$. This system admits as input a signal $x(t)$ and outputs a corresponding signal $y(t)$. Assuming that:

$$
x(t)=\operatorname{ramp}(-t) u(t+1)+\operatorname{rect}\left(t-\frac{1}{2}\right) \quad \text { and } \quad h(t)=\operatorname{rect}(t)
$$

Derive an expression of the output $y(t)$. Show all derivation details with appropriate illustrations.

Solution:

This problem consists of finding an expression for $y(t)$ such that:

$$
y(t)=x(t) * h(t)=\int_{-\infty}^{+\infty} x(\tau) \cdot h(t-\tau) \mathrm{d} \tau
$$

As a starting point, the evaluation of the above integral is performed in light of a clear visualization of the signals. For this purpose, the signals $x(t)$ and $h(t)$ are first plotted as follows.

Now, after expressing the signals as a function of a dummy variable τ, one of the signals will be reflected with respect to the y-axis and then shifted by t. The chosen signal for reflection and shifting is $h(t)$. Note that since $h(\tau)$ is even, then its reflected version is identical to its original counterpart.

This being done, it is now the time to start shifting $h(t-\tau)$ and consider the different resulting overlaps with $x(\tau)$ as follows.

Case 1:

In this case:

$$
t+\frac{1}{2} \leq-1 \Rightarrow t \leq-\frac{3}{2}
$$

There exists no overlap between $x(\tau)$ and $h(t-\tau)$. Accordingly:

$$
x(\tau) \cdot h(t-\tau)=0 \Rightarrow y(t)=0
$$

Case 2:

In this case:

$$
t-\frac{1}{2}<-1<t+\frac{1}{2} \Rightarrow-\frac{3}{2}<t<-\frac{1}{2}
$$

There exists an overlap between $x(\tau)$ and $h(t-\tau)$ from -1 to $t+\frac{1}{2}$. Accordingly:

$$
y(t)=\int_{-1}^{t+\frac{1}{2}}(-\tau \cdot 1) \mathrm{d} \tau=-\left.\frac{\tau^{2}}{2}\right|_{-1} ^{t+\frac{1}{2}}=-\frac{1}{2}(t+1 / 2)^{2}+\frac{1}{2}=-\frac{\left(t^{2}+t\right)}{2}+\frac{3}{8}
$$

Case 3:

In this case:

$$
t-\frac{1}{2}=-1 \quad \text { and } \quad t+\frac{1}{2}=0 \Rightarrow t=-\frac{1}{2}
$$

There exists an overlap between $x(\tau)$ and $h(t-\tau)$ from -1 to 0 . Accordingly:

$$
y(t)=\int_{-1}^{0}(-\tau \cdot 1) \mathrm{d} \tau=-\left.\frac{\tau^{2}}{2}\right|_{-1} ^{0}=\frac{1}{2}
$$

Case 4:

In this case:

$$
t-\frac{1}{2}<0<t+\frac{1}{2} \Rightarrow-\frac{1}{2}<t<\frac{1}{2}
$$

There exists an overlap between $x(\tau)$ and $h(t-\tau)$ from $t-\frac{1}{2}$ to $t+\frac{1}{2}$. However, it is important to observe that the product $x(\tau) \cdot h(t-\tau)$ has two different values respectively in the intervals $\left[t-\frac{1}{2} ; 0\right]$ and $\left[0 ; t+\frac{1}{2}\right]$. Accordingly:

$$
y(t)=\int_{t-\frac{1}{2}}^{0}(-\tau \cdot 1) \mathrm{d} \tau+\int_{0}^{t+\frac{1}{2}}(1 \cdot 1) \mathrm{d} \tau=-\left.\frac{\tau^{2}}{2}\right|_{t-\frac{1}{2}} ^{0}+\left.\tau\right|_{0} ^{t+\frac{1}{2}}=\frac{1}{2}\left(t-\frac{1}{2}\right)^{2}+t+\frac{1}{2}=\frac{t^{2}+t}{2}+\frac{5}{8}
$$

Case 5:

In this case:

$$
t-\frac{1}{2}=0 \quad \text { and } \quad t+\frac{1}{2}=1 \Rightarrow t=\frac{1}{2}
$$

There exists an overlap between $x(\tau)$ and $h(t-\tau)$ from 0 to 1. Accordingly:

$$
y(t)=\int_{0}^{1}(1 \cdot 1) \mathrm{d} \tau=\left.\tau\right|_{0} ^{1}=1
$$

Case 6:

In this case:

$$
t-\frac{1}{2}<1<t+\frac{1}{2}=1 \Rightarrow \frac{1}{2}<t<\frac{3}{2}
$$

There exists an overlap between $x(\tau)$ and $h(t-\tau)$ from $t-\frac{1}{2}$ to 1 . Accordingly:

$$
y(t)=\int_{t-\frac{1}{2}}^{1}(1 \cdot 1) \mathrm{d} \tau=\left.\tau\right|_{t-\frac{1}{2}} ^{1}=1-t+\frac{1}{2}=-t+\frac{3}{2}
$$

Case 7:

In this case:

$$
t-\frac{1}{2}>1 \Rightarrow t>\frac{3}{2}
$$

There exists no overlap between $x(\tau)$ and $h(t-\tau)$. Accordingly:

$$
x(\tau) \cdot h(t-\tau)=0 \Rightarrow y(t)=0
$$

Finally, to this end, grouping all of the above cases together, leads to having:

$$
y(t)= \begin{cases}0 & , \text { for } t<\frac{3}{2} \\ -\frac{\left(t^{2}+t\right)}{2}+\frac{3}{8} & , \text { for }-\frac{3}{2} \leq t<-\frac{1}{2} \\ \frac{1}{2} & , \text { for } t=-\frac{1}{2} \\ \frac{t^{2}+t}{2}+\frac{5}{8} & , \text { for }-\frac{1}{2}<t<\frac{1}{2} \\ 1 & \text { for } t=\frac{1}{2} \\ -t+\frac{3}{2} & , \text { for } \frac{1}{2}<t \leq \frac{3}{2} \\ 0 & \text { for } t>\frac{3}{2}\end{cases}
$$

BONUS: (5 Extra Points)

Plot $y(t)$ as a function of t with appropriate graph labelling. Use the graph below.

Solution:

The plot of $y(t)$ as a function of t is shown in the figure below.

Problem 3: Fourier Series with application for Parseval's Theorem (25 Points)

Consider the periodic continuous-time real signal $x(t)$ whose bandwidth does not exceed 50 Hz and whose single-sided magnitude and phase spectra are illustrated in Figure 1 below.

Figure 1: Amplitude and phase spectra of a signal $x(t)$.

Answer the following questions:

1. Find the fundamental frequency and the fundamental period of $x(t)$.
(2 Points)
2. Determine the exponential Fourier Series coefficients of $x(t)$.
(5 Points)
3. Determine whether $x(t)$ is even, odd or neither. Justify.
(2 Points)
4. Determine the trigonometric Fourier Series coefficients of $x(t)$.
5. Compute the average value of $x(t)$.
(2 Points)
6. Compute the total amount of power carried by $x(t)$.
(3 Points)
7. Determine which of $x(t)$'s harmonics carry most of that power.
(2 Points)
8. Compute the DC power and the power carried by $x(t)$'s third harmonic.

Solution:

1. Observe from the spectrum of the signal that two consecutive harmonics are separated by 10 Hz . Consequently:

$$
f_{0}=10(\mathrm{~Hz}) \Rightarrow T_{0}=\frac{1}{f_{0}}=0.1(\mathrm{~s})
$$

2. From the single-sided spectrum of the signal, the following values of the exponential Fourier Series coefficients can be obtained:

$$
\begin{aligned}
X[0] & =|X[0]| e^{j \arg (X[0])}=0 e^{0}=0 \\
X[1] & =|X[1]| e^{j \arg (X[1])}=4 e^{j \frac{\pi}{2}}=4 j \\
X[2] & =|X[2]| e^{j \arg (X[2])}=3 e^{j \frac{\pi}{2}}=3 j \\
X[3] & =|X[3]| e^{j \arg (X[3])}=2 e^{j \frac{\pi}{2}}=2 j \\
X[4] & =|X[4]| e^{j \arg (X[4])}=1 e^{j \frac{\pi}{2}}=j \\
X[5] & =|X[5]| e^{j \arg (X[5])}=1 e^{j \frac{\pi}{2}}=j \\
X[m] & =0, \text { for } \forall m>5
\end{aligned}
$$

From the property $X[-m]=X^{*}[m]$, it can be concluded that:

$$
\begin{aligned}
& X[-1]=-4 j \quad ; \quad X[-2]=-3 j \quad ; \quad X[-3]=-2 j \\
& X[-4]=-j \quad ; \quad X[-5]=-j \quad ; \quad X[-m]=0, \text { for } \forall m>5
\end{aligned}
$$

3. Recall that:

$$
X[m]=\frac{X_{c}[m]-j X_{s}[m]}{2}
$$

Having evaluated all the exponential Fourier Series coefficients above, observe that all of these coefficients are purely imaginary. As such, for all of these coefficients $X_{c}[m]=0$, for $\forall m$. Hence, the signal is odd.
4. Since it was shown in question (3.) that $X_{c}[m]=0, \forall m$ and having evaluated the exponential Fourier Series coefficients in question (1.), then the $X_{s}[m]$ can be evaluated using the relationship:

$$
X[m]=\frac{X_{c}[m]-j X_{s}[m]}{2}=-j \frac{X_{s}[m]}{2} \Rightarrow X_{s}[m]=2 j X[m]
$$

It follows that:

$$
\begin{aligned}
& X_{s}[1]=-8 \quad ; \quad X_{s}[2]=-6 \quad ; \quad X_{s}[3]=-4 \\
& X_{s}[4]=-2 \quad ; \quad X_{s}[5]=-2 \quad ; \quad X_{s}[m]=0, \text { for } \forall m>5
\end{aligned}
$$

5. The average value of $x(t)$ is given by:

$$
x_{\mathrm{avg}}=\frac{1}{T_{0}} \int_{T_{0}} x(t) \mathrm{d} t=X[0]=0
$$

6. From Parseval's theorem, the total power carried by $x(t)$ is given by:

$$
\begin{aligned}
P_{T} & =|X[0]|^{2}+2 \sum_{m \in \mathbb{Z}^{+}}|X[k]|^{2} \\
& =|X[0]|^{2}+2\left[|X[1]|^{2}+|X[2]|^{2}+|X[3]|^{2}|X[4]|^{2}+|X[5]|^{2}\right] \\
& =0+2(16+9+4+1+1)=62(\mathrm{~W})
\end{aligned}
$$

7. From the magnitude spectrum, it is clear that the first harmonic (i.e. $m=1$) carries the largest proportion of the power.
8. The DC power of $x(t)$ is given by:

$$
P_{D C}=|X[0]|^{2}=0(\mathrm{~W})
$$

The power carried by the third harmonic is given by:

$$
P_{3}=2|X[3]|^{2}=2 \cdot 4=8(\mathrm{~W})
$$

Problem 4: Composite Impulse Response (25 Points)

Consider the Linear and Time-Invariant (LTI) system illustrated in figure 2(a).

(a) Original system.

(b) Equivalent system.

Figure 2: LTI System.
This entire system is composed of several LTI subsystems represented by blocks that are annotated with these subsystems' individual impulse responses $h_{1}(t)$ through $h_{5}(t)$. These subsystems are to be combined into one single block whose equivalent impulse response is $h_{\mathrm{eq}}(t)$.

1. Express $h_{\mathrm{eq}}(t)$ as a function of $h_{1}(t), h_{2}(t), h_{3}(t), h_{4}(t)$ and $h_{5}(t)$.
2. Assume that:
(10 Points)
(15 Points)

$$
\begin{aligned}
& h_{1}(t)=h_{4}(t)=u(t) \\
& h_{2}(t)=h_{3}(t)=5 \delta(t) \\
& h_{5}(t)=e^{-2 t} u(t)
\end{aligned}
$$

Derive an expression for $h_{\text {eq }}(t)$.
Solution:

1. Denote by $y_{i}(t)$ to be the output of subsystem i where $(i=1,2,3,4,5)$. Therefore:

$$
\begin{aligned}
y_{1}(t) & =x(t) * h_{1}(t) \\
y_{2}(t) & =y_{1}(t) * h_{2}(t)=\left[x(t) * h_{1}(t)\right] * h_{2}(t)=x(t) *\left[h_{1}(t) * h_{2}(t)\right] \\
y_{3}(t) & =y_{1}(t) * h_{3}(t)=\left[x(t) * h_{1}(t)\right] * h_{3}(t)=x(t) *\left[h_{1}(t) * h_{3}(t)\right] \\
y_{5}(t) & =x(t) * h_{5}(t) \\
y_{4}(t) & =\left[y_{3}(t)+y_{5}(t)\right] * h_{4}(t) \\
& =\left[x(t) *\left[h_{1}(t) * h_{3}(t)\right]+x(t) * h_{5}(t)\right] * h_{4}(t) \\
& =x(t) *\left[h_{1}(t) * h_{3}(t) * h_{4}(t)+h_{5}(t) * h_{4}(t)\right]
\end{aligned}
$$

It follows that, the overall output $y(t)$ is given by:

$$
\begin{aligned}
y(t) & =y_{4}(t)+y_{2}(t) \\
& =x(t) *\left[h_{1}(t) * h_{3}(t) * h_{4}(t)+h_{5}(t) * h_{4}(t)\right]+x(t) *\left[h_{1}(t) * h_{2}(t)\right] \\
& =x(t) *\left[h_{1}(t) * h_{3}(t) * h_{4}(t)+h_{4}(t) * h_{5}(t)+h_{1}(t) * h_{2}(t)\right]
\end{aligned}
$$

Finally, the equivalent impulse response of the system is given by:

$$
h_{\mathrm{eq}}(t)=h_{1}(t) * h_{3}(t) * h_{4}(t)+h_{4}(t) * h_{5}(t)+h_{1}(t) * h_{2}(t)
$$

2. Given the above assumed expressions for $h_{1}(t)$ through $h_{5}(t)$, then:

$$
h_{\mathrm{eq}}(t)=u(t) * 5 \delta(t) * u(t)+u(t) * e^{-2 t} u(t)+u(t) * 5 \delta(t)=\left[5 t+\frac{1}{2}\left(1-e^{-2 t}\right)+5\right] u(t)
$$

